Glass Industry News

Groundbreaking Alternative Fuel Trials Achieve Major Milestone Toward Industrial Decarbonisation

, Glass Futures

Key achievements include: 

  • Industrial trials involving the UK’s largest glass and ceramic manufacturers conducted at the end of 2024 and the start of 2025 utilised liquid biofuels in glass and ceramics production.
  • Successful implementation and trial of a new e-boosting system at an industrial scale, demonstrating the potential to enhance furnace efficiency and heat the glass using electricity, thus reducing reliance on natural gas and other fuels.
  • Ceramics UK have successfully demonstrated hydrogen and hydrogen-natural gas blend firing in a custom-designed ceramics pilot-kiln at the Glass Futures pilot facility.

The successful completion of major industrial fuel switching trials mark a significant step toward improving energy efficiency and reducing carbon emissions within energy-intensive industries, supporting the UK’s goal to transition towards net zero while ensuring alternative energy solutions are viable long-term.

Three £6 million government funded Industrial Fuel Switching (IFS) projects each focus on transitioning high temperature industrial manufacturing processes away from fossil fuels. Glass Futures is leading this effort for the glass and foundation industries by exploring alternative fuels such as waste-derived biofuels, electrical boosting, and hydrogen. 

These projects form part of the UK’s Industrial Fuel Switching (IFS) Programme, supported by the government’s £1 billion Net Zero Innovation Portfolio managed by the Department for Energy Security & Net Zero (DESNZ). 

Waste-derived biofuels

Industrial trials conducted at the end of 2024 and the start of 2025 utilised five different types of liquid biofuels in glass and ceramics production. The trials involved four of the UK’s largest glass manufacturers — Ardagh Glass Packaging, Encirc (part of Vidrala), Pilkington UK Ltd (part of NSG Group), and O-I — as well as the UK’s largest shaped refractory producer, DSF Refractories & Minerals, who also supply refractory products into the glass sector. 

The trials included modification and adoption of the existing liquid fuel systems in a number of the plants taking part in the project. The successful biofuel demonstrations will help Glass Futures to develop an economic model for switching to biofuels, providing insights into the feasibility of this low-carbon alternative fuel as an option to help rapidly decarbonise industry.

Electrification

Electric boosting technology involves heating the molten glass via electrodes that are inserted into the molten glass within the furnace. E-boosting enhances furnace efficiency and is an enabler to heat the glass using electricity, thus reducing reliance on natural gas and other fuels. 

Glass Futures’ members and one of the world's largest manufacturers of float glass, Guardian Glass successfully implemented and trialed a new e-boosting system at Guardian’s plant in Goole. Another prominent glass container manufacturer, Encirc also carried out e-boost trials on its existing production line. 

Glass Futures is currently developing its 30T/day oxy-fired pilot furnace to reach a higher percentage of electrical boosting. Further pilot trials are planned for later this year, and will assess the maximum levels of e-boost that can be achieved (potentially >60%). The trials will also assess the rate at which the boost system can be turned up or down, to respond to supply/demand constraints on local electricity grids. 

Hydrogen

In a project led by Ceramics UK, Glass Futures and its member, Ryze Power (a supplier of hydrogen and hydrogen infrastructure), have successfully demonstrated hydrogen and hydrogen-natural gas blend firing in a custom-designed ceramics pilot-kiln at the Glass Futures pilot facility in St Helens, part of the Liverpool City Region. 

The successful operation of the pilot kiln firing on 100% hydrogen and other blends has provided valuable insights into the impact of hydrogen on ceramic products including bricks, tiles, refractories, pipes, sanitaryware, tableware and specialty ceramics. These findings further support the case for hydrogen as a viable alternative for direct combustion processes where electrification is currently not an option. 

Justin Kelly, CEO of Glass Futures said: “The successful completion of these trials is a crucial milestone in the UK’s journey to net zero. It not only demonstrates the technical feasibility of low-carbon fuel alternatives but also opens up new opportunities for economic growth through sustainable energy supply chains. Glass Futures’ continued commitment to decarbonisation is reflected in its collaborative approach, working closely with international industry leaders, government agencies, and research partners.”

Habib Khosroshahi, projects team manager at Glass Futures added: “The involvement of key supply chain partners such as Argent Energy and Watson Fuels highlights the potential for waste-derived fuels to play a critical role in industrial decarbonisation without disrupting food supply resources. Collaborating with organisations such as Supergen Bioenergy Hub at Aston University helps us to transition towards more sustainable energy solutions by prioritising the most sustainable fuel choices.

“As the glass and foundation industries continue to embrace these transformative technologies, Glass Futures work to ensure that sustainability does not come at the cost of efficiency or economic viability. By working collaboratively withindustry we have demonstrated the technical viability, but now we need help from wider stakeholders throughout the supply chain to make it a reality.”

, © Glass Futures

Notícias sobre o material do site é copyright e pertence à empresa ou ao seu fornecedor de terceiros notícia, e todos os direitos reservados. Qualquer usuário que acessa esse material poderá fazê-lo apenas para seu próprio uso pessoal, bem como a utilização desse material é de risco exclusivo do Utilizador. A redistribuição ou exploração comercial de material tal notícia é expressamente proibida. Se tal notícia material é fornecido por um terceiro, cada utilizador concorda em observar e estar vinculado aos termos específicos de utilização aplicáveis a material notícia. Nós não representamos nem endossamos a precisão ou confiabilidade de qualquer informação contida em qualquer notícia ou sites externos referidos na notícia.

Should the content or the design of these sites violate third parties rights or legal prescriptions, we kindly ask you to send us a respective message without invoice or cost. We guarantee that passages where the claim is considered as justified will be removed immediately, without any necessity to involve any lawyer into this issue. We will reject any claim caused by submission of a honorary note in this regard without any prior contact and confirmation of the issueby us and we reserve the right ssue counter claim ourselves because of violation of aforesaid conditions.



Info Grid

Glass studies

Updated worldwide glass study 2025

plants.glassglobal.com

Updated hollow glass study 2025

Request more information

Updated float glass study 2025

Request more information

Further glass market studies

Request more information

Perfil da Empresa



Updated worldwide glass market study 2025 available now for flat, container glass and tableware

We have updated our international studies on flat glass, container glass and tableware for 2025.

This unique software provides a global overview about glass producers and technical details. Easy to use and clear tables summarize information and data about glass makers such as: Glass types: flat glass, container glass, tableware, production capacities in regions and countries, number of furnaces, furnace types, year of construction, glass types and sub-types, products, project information, special news and downloads.

Further databases supplying demoscopic data and import and export data complete the market survey. Based on these data, prepare individual country profiles with information about local production capacities, local market sizes and expected demand in the future.

Request your offer via plants.glassglobal.com.

Updated container glass study 2025

X

Updated float glass study 2025

X

Further glass studies and reports 2025

X